100 PIERPAOLO GIANNOCCOLO To solve the asymmetric case we must have a parametric solution. Assume a quadratic utility function U(we — Zf) = [we - Zf)2 Then, we can rewrite the solutions given by the maximization e _ n + k(we - zf)2 - k(uf - zf)2 / +- 1 2k(we - Zf) n + k{uf - zf)2 - k(uf - zf)2] - (a + |n)ri zf i-ri r2 ~ /V - Zf)2 + - Zf)2 2k[we - Zf ) ^ a + Zf [r2 - k{uf - Zf)2 + k{we - Zf)2l - (a + f s2)s2 Zf +-L-—-J-= + bs2 For simplicity we assume these value for the parameters: b = 2; a = 1; we=10;k=l Solving these four equations we obtain the following two best responses: (1) -39X3 + 884/c2 + (59 + 59/ + 420y)x + y4 + 398/ + 40y - 1 = 0 (2) -39/ + (884 + 2c)/ + (59 - 29a + 59/c2 + 420x)y + x4+ (398 - a)/ + (40 + 20c)x -1=0 Where x = Zf y = Zf Appendix (4) Overlapping generation model Autarky solution Max : R, with Rt = + r,_i] Zmax - (ya + ^t-^j ~s,{a + ^st FOC(st) : tmax-a-bst = 0 FOC(j,_i) : Zmax - a - = 0 ^max _ Then the solution is: s =-7- b From the (43) the solution is: s = —-^—- with s e (0,1) and St = st-1 = r