```
\(p\) : average number of information packages of each R\&D project
n : number of past cycles
\(\mathrm{I}_{\mathrm{i}}\) : number of remaining information packages of past cycles from \(\mathrm{i}=1\) to \(\mathrm{i}=\mathrm{n}\) )
\(f\) : rate of fading effect (*)
\(E=\) fraction of added information packages by external knowledge
```

(*) It shall be noted that for remaining information packages of past cycles we intend that initial information packages of a cycle is reduced by fading effect f at each successive cycle before the last one. With $f=0$ the fading effect is not present and with $f=1$ there is a complete loss of past information packages.

The number of potential innovative ideas G, independently of their validity, is obtained by a combinatory calculation considering the number of available information packages I_{T}, and number of combining information packages m necessary to have a potential innovative idea, and expressed by the following formula:

$$
\mathrm{G}=\mathrm{I}_{\mathrm{T}}\left(\mathrm{I}_{\mathrm{T}}-1\right) / m
$$

in which we have:

G: number of potential ideas for innovations
I_{T} : total number of information packages available for potential innovative ideas after the last cycle
m : combinatory number of information packages necessary to generate a potential innovative idea

In fact, such number G of potential ideas is a simple combinatory result not considering any validity about specific combinations and contains necessarily in fact a large number of invalid or even absurd combinations. It is the task of the territorial innovative system to make a selection of valid innovative ideas. The number P of effective new valid ideas becoming R\&D research proposals may be obtained by considering a rate factor s applied to the number G of potential new innovative ideas:

$$
\mathrm{P}=s \mathrm{G}
$$

Such rate s, expressed as percentage, represents a measure of the innovative system efficiency (ISE) of a territory. A last selection occurs in comparing R\&D project proposals budgets with available $\mathrm{R} \& \mathrm{D}$ investments, and we may define a rate t determining the number N of $\mathrm{R} \& \mathrm{D}$ proposals that can effectively become R\&D projects following the relation:

$$
\begin{equation*}
\mathrm{N}=t \mathrm{P} \tag{6}
\end{equation*}
$$

Concluding we may express the total number N of R\&D projects carried out in a cycle as a function of generated packages of information I_{T} by the previous cycles combining equations (4), (5) and (6):

$$
\begin{equation*}
\mathrm{N}=t s \mathrm{I}_{\mathrm{T}}\left(\mathrm{I}_{\mathrm{T}}-1\right) / m \tag{7}
\end{equation*}
$$

However, in simplifying our application, we will consider later that all generated $\mathrm{R} \& \mathrm{D}$ proposals are valid and there is always enough $R \& D$ investment for the corresponding $R \& D$ projects. That means that we consider always $t=1$ and consequently the number N of $\mathrm{R} \& \mathrm{D}$ projects will be equal to the number P of generated $\mathrm{R} \& \mathrm{D}$ proposals.

Considering the adopted functioning of the model with its simplifications we may expect the formation of three scenarios. The first one corresponds to the case of introduction of a limited number of initial R\&D projects and a low ISE, by consequence the number of R\&D projects

