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where μ1 and μ0 are scalars, β0 and β1 are two 

unknown vector parameters defining the 

different response of unit i to the vector of 

covariates x, e0 and e1 are two random errors 

with zero unconditional variance and is

represents unit i-th neighbourhood effect due 

to the treatment administrated to units 

j (j = 1, ..., N1). Observe that, by linearity, we 

have that: 
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where the parameter ωij is the generic element 

of the weighting matrix Ω expressing some 

form of distance between unit i and unit j. 

Although not strictly required for consistency, 

we also assume that these weights add to one, 

i.e.  
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In short, previous assumptions say that units 

i neighbourhood effect takes the form of a 

weighted-mean of the outcomes of treated  

 

units and that this “social” effect has an 

impact only on unit i’s outcome when this unit 

is untreated.  

As a consequence, by substitution of (8) into 

(7), we get that: 
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making clear that untreated unit’s i outcome is 

a function of its own idiosyncratic 

characteristics (xi), the weighted outcomes of 

treated units multiplied by a sensitivity 

parameter γ, and a standard error term.  

We state now a series of propositions 

implied by previous assumptions.  

 

Proposition 1. Formula of ATE with 

neighbourhood interactions. Given 

assumptions 2 and 3 and the implied 

equations established in (7), the average 

treatment effect (ATE) with neighbourhood 

interactions takes on this form:   
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where E( )i ix x is the unconditional mean 

of the vector xi, and 1 0 1      . The 

proof is in Appendix. See A1. 

Indeed, by the definition of ATE as given in 

(4) and by (7), we can immediately show that 

for such a model: 
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