Cerulli G., Working Paper Cnr-Ceris, N° 04/2014 and where: N1 y   ij  1  x jβ1  e1 j    ij 1 j j 1 N1 N1 j 1 j 1 ei    ij e1 j  e0i  wi (e1i  e0i )  wi  ij e1 j N1 j 1 N1 N1 N1 j 1 j 1 j 1 1  ij   ij x jβ1   ij e1 j   N1  N1  j 1  j 1 (12) 1    ij x j  β1   ij e1 j and by developing ATE further using Eq. (11), we finally get the result in (10). The proof is in Appendix. See A3. Proposition 4. Ordinary Least Squares (OLS) consistency. Under assumption 1 (CMI), 2 and 3, the error tem of regression (14) has zero mean conditional on (wi, xi), i.e.: N1  N1  E  ei wi ,xi   E    ij e1 j  e0i  wi (e1i  e0i )  wi  ij e1 j wi ,xi   0 Proposition 2. Formula of ATE(xi) with j 1  j 1  (15) N1 N1   neighbourhood interactions. Given E  ei wi ,xi   E    ij e1 j  e0i  wi (e1i  e0i )  wi  ij e1 j wi ,xi   0 assumptions 2 and 3 and the result  inj 1 j 1  proposition 1, we have that: thus implying that Eq. (14) is a regression whose parameters can be consistently ATE(xi ) = ATE  (xi  x )δ  ij ( x  x model j ) β1 j  1 (13) estimated by Ordinary Least Squares (OLS). N1 ATE(xi ) = ATE  (xi  x )δ  ij ( x  x j ) β1 The proof is in Appendix. See A4. j 1 Once a consistent estimation of the parameters of (14) is obtained, we can where it is now easy to see that estimate ATE directly from the regression, ATE =Ex{ATE(x)}. The proof is in Appendix. and ATE(xi) by plugging the estimated See A2. parameters into formula (11). This is because ATE(xi) becomes a function of consistent Proposition 3. Baseline random-coefficient estimates, and thus consistent itself: regression. By substitution of equations (7) into the POM of Eq. (6), we obtain the plim ATE(xi )  ATE(xi ) following random-coefficient regression model (Wooldridge, 1997): where ATE(xi ) is the plug-in estimator of N1   N ATE(xi). Observe, however, that the yi    wi  ATE+xiβ0  wi (xi  x )δ  wi ij w j ((exogenous) x  x j ) β1  eiweighting matrix(14) Ω=[ωij] needs N    wi  ATE+xiβ0  wi (xi  x )δ  wi ij w j ( x  x j ) β1  ei j 1 where,   0  1 δ  β1  β0 j 1 (14) to be provided in advance. (14) Once the formulas for ATE and ATE(xi) are available, it is also possible to recover the Average Treatment Effect on Treated (ATET) and on non-Treated (ATENT) as: 11