Table 3. Descriptive Statistics

Operating Hospital $\operatorname{Cost}\left(10^{3} €\right)$ Labor + Drugs + Capital cost	Mean	St. Dev.	Min	Median	Max
	88,990	42,985	29,262	86,495	309,694
Production data					
Total number of patients (Y)	22,072	13,237	639	19,728	68,715
Average DRG weight (DRGW)	1.12	0.20	0.64	1.06	1.93
Total in-patients days	142,171	83,617	18,400	131,396	576,810
Total number of beds (K)	521	294	62	485	1,848
Input prices					
Medical Staff (€ per MS worker)	46,181	2,133	41,665	46,319	55,572
Administrative Staff ($€$ per AS worker)	26,544	1,841	22,053	26,310	31,170
Drugs ($€$ per in-patients day)	63	31	21	57	200
Capital ($€$ per bed)	8,051	3,715	3,016	7,170	22,859
Input cost-shares					
Medical Staff ($S_{M S}$)	0.67	0.04	0.57	0.67	0.75
Administrative Staff ($S_{A S}$)	0.20	0.03	0.14	0.20	0.30
Drugs (S_{D})	0.09	0.03	0.03	0.09	0.20
Capital (S_{K})	0.04	0.01	0.02	0.04	0.09

2.3. Functional form and estimation procedure

The bulk of empirical works on hospital costs adopted the well-known Translog specification. Given the complexity of hospital services production process, we do not impose a priori restrictions on the functional form and estimate a more general model, namely the Generalised Composite cost function, which has been first introduced by Pulley and Braunstein $\left(1992, \mathrm{~PB}_{\mathrm{G}}\right)$. The PB_{G} model reads as follows:
(1)

$$
\begin{aligned}
& O H C^{(\phi)}=\left\{\operatorname { e x p } \left[\left(\begin{array}{l}
\alpha_{0}+\alpha_{Y} Y^{(\pi)}+\alpha_{\text {DRGW }} D R G W^{(\pi)}+\frac{1}{2} \alpha_{Y Y} Y^{(\pi)} Y^{(\pi)}+\frac{1}{2} \alpha_{\text {DRGWDRGW }} D R G W^{(\pi)} D R G W^{(\pi)} \\
+\alpha_{\text {YDRGW }} Y^{(\pi)} D R G W^{(\pi)}+\sum_{r} \delta_{Y r} Y^{(\pi)} \ln P_{r}+\sum_{r} \delta_{\text {DRGWr }} D R G W^{(\pi)} \ln P_{r}
\end{array}\right]\right.\right. \\
&\left.\cdot \exp \left[\sum_{r} \beta_{r} \ln P_{r}+\frac{1}{2} \sum_{r} \sum_{l} \beta_{r l} \ln P_{r} \ln P_{l}\right]\right\}
\end{aligned}
$$

where the superscripts in parentheses π, ϕ and τ represent Box-Cox transformations (for example $Y^{(\pi)}=\left(Y^{\pi}-1\right) / \pi$ for $\pi \neq 0$ and $Y^{(\pi)} \rightarrow \ln Y$ for $\left.\pi \rightarrow 0\right)$. OHC is the long-run production cost of hospital services, Y is the output, $D R G W$ is the average degree of complexity of the service provided, and P_{r} indicates factor prices (with $r=M S, A S, D$ and K). By applying the Shephard's Lemma, the associated input cost-share equations are:

$$
\begin{align*}
S_{r}= & {\left[\begin{array}{l}
\alpha_{0}+\alpha_{Y} Y^{(\pi)}+\alpha_{\text {DRGW }} D R G W^{(\pi)}+\frac{1}{2} \alpha_{Y Y} Y^{(\pi)} Y^{(\pi)}+\frac{1}{2} \alpha_{\text {DRGWDRGW }} D R G W^{(\pi)} D R G W^{(\pi)} \\
+
\end{array} \alpha_{Y D R G W} Y^{(\pi)} D R G W^{(\pi)}+\sum_{r} \delta_{Y_{r}} Y^{(\pi)} \ln P_{r}+\sum_{r} \delta_{D R G W r} D R G W^{(\pi)} \ln P_{r} \cdot\left(\delta_{Y_{r}} Y^{(\pi)}+\delta_{D R G W r} D R G W^{(\pi)}\right)\right.} \tag{2}\\
& +\beta_{r}+\sum_{l} \beta_{r l} \ln P_{l}
\end{align*}
$$

