arise in testing hypotheses where γ is equal to 0 because $\gamma = 0$ lies on the boundary of the parameter space for γ , given that it cannot take negative values. In all these cases, if H_0 is true, the generalized LR statistic, Λ , has asymptotic distribution which is a mixture of chi-square distributions whose critical values are obtained from Table 1 in Kodde and Palm (1986)⁵⁴.

Null hypothesis	Log- likelihood	χ^2 - statistic	Decision
$H_0: \ \gamma = \delta_0 = \delta_R = \delta_{SP} = \delta_\tau = \delta_{RSP} = \delta_{R\tau} = 0$	179.258	64.655*	Reject Ho
$H_0: \ \gamma = \delta_0 = \delta_{SP} = \delta_\tau = 0$	182.847	57.478*	Reject Ho
$H_0: \delta_{R_{\tau}} = 0$	211.513	0.147	Accept H ₀
$H_0: \ \delta_{R_\tau} = \beta_{MSy} = \beta_{MSk} = \beta_{yy} = \beta_{LMS} = \beta_{ySP} = \beta_{SPSP} = 0$	205.643	11.885	Accept H ₀
Restriction : $\delta_{R\tau} = \beta_{MSy} = \beta_{MSk} = \beta_{yy} = \beta_{LMS} = \beta_{ySP} = \beta_{SPSP} = 0$			
$H_0: \ \gamma = \delta_0 = \delta_R = \delta_{SP} = \delta_\tau = \delta_{RSP} = 0$	171.718	67.849*	Reject H ₀
$H_0: \gamma = \delta_0 = \delta_{SP} = \delta_{\tau} = 0$	176.310	58.665*	Reject Ho
$H_0: \ \delta_0 = \delta_R = \delta_{SP} = \delta_\tau = \delta_{RSP} = 0$	185.240	40.806	Reject Ho
$H_0: \ \delta_R = \delta_{SP} = \delta_\tau = \delta_{RSP} = 0$	192.671	25.943	Reject H ₀
$H_0: \delta_0 = 0$	201.899	7.488	Reject H ₀

 Table 2. Likelihood-ratio tests of hypotheses for parameters of the stochastic frontier cost function [3] and the cost inefficiency model [5]

* In this case the LR test statistic is asymptotically distributed as a mixture of chi-square distributions with degrees of freedom equal to the number of parameters assumed to be equal to zero in the null hypothesis H_0 , provided H_0 is true. The critical values for this mixed χ^2 -distribution are obtained from Table 1 in Kodde and Palm (1986).

It can be seen from Table 2 that the null hypothesis of absence of x-inefficiency effects from the model (i.e., H_0 : $\gamma = \delta_0 = \delta_R = \delta_{SP} = \delta_\tau = \delta_{RSP} = \delta_{R\tau} = 0$) is strongly rejected at 1 per cent level of significance⁵⁵. The second null hypothesis we consider, H_0 : $\gamma = \delta_0 = \delta_{SP} = \delta_\tau = 0$, specifies that the inefficiency effects are not stochastic. If the parameter γ is zero, then the variance of the $u_{ft}s$ is zero and so the model reduces to a traditional mean response function in which the z-variables, R_{ft} , $(R_{ft} \times \ln SP_{ft})$ and $(R_{ft} \times \tau_{ft})$, are included in the cost function⁵⁶. Once again, the H_0 hypothesis is rejected at

⁵⁴ For more on the use of this test in stochastic frontier models, see Coelli (1995) and Coelli and Battese (1996).

⁵⁵ The LR test statistic, 64.655, exceeds the 1% critical value for the mixed χ^2 -distribution with 7 degrees of freedom, 17.755.

⁵⁶ Note that the parameters δ_0 , δ_{SP} and δ_{τ} must be zero if γ is zero, given that the cost function already involves an intercept term, β_0 , a first-order coefficient for the speed effect, β_{SP} , and a parameter associated with the year of observation, β_{τ} . If there are no random inefficiency effects in the model, then the coefficients δ_0 , δ_{SP} and δ_{τ} are not identified.