Ceris-Cnr, W.P. N° 2/2002 or, alternatively, f Ψ (ψ ) = 1 exp− {(ψ − δ ' z ) 2 /(σ v2 + σ u2 )} 2 . 2 2π (σ u + σ v2 )1 2 {Φ[δ ' z / σ u ] / Φ[ µ * / σ * ]} [A.9b] The density function for the cost value, vcft, in equation [A.1], is most conveniently given using the expression in equation [A.9b], 2 1 [vc ft − vc( x ft ; β ) − δ ' z ]  exp−   2  σ v2 + σ u2  , f VC ft (vc ft ) = 2π (σ u2 + σ v2 )1 2 {Φ[d ft ] / Φ[d *ft ]} [A.10] where d ft = δ ' z ft / σ u , d *ft = µ *ft / σ * and µ *ft = [σ v2δ ' z ft + σ u2 (vc ft − vc( x ft ; β )] /(σ u2 + σ v2 ) . Given that there are Tf observations obtained for the f th firm, where 1 ≤ Tf ≤ T, and vcf ≡ (vc f 1 , vc f 2 ,..., vc fT f )' denotes the vector of the Tf cost values in equation [A.1], then the logarithm of the likelihood function for the sample observations, vc ≡ (vc1’, vc2’,…, vcF’)’, is 1 F L(Θ * ; vc) = −  ∑ T f 2  f =1 T   ln 2π + ln(σ u2 + σ v2 )   { } { } − 1 F f [vc ft − vc( x ft ; β ) − δ ' z ft ] 2 /(σ u2 + σ v2 ) ∑∑ 2 f =1 t =1 − 1 F TF ∑∑ ln Φ[d ft ] − ln Φ[d *ft ] , 2 f =1 t =1 { } [A.11] where Θ* ≡ (β ’, δ ’, σu2, σv2)’. Using the re-parameterization of the model suggested by Battese and Corra (1977), involving the parameters σ 2 ≡ (σv2 + σu2) and 0 ≤ γ ≡ σu2/(σv2 + σu2) ≤ 1, the logarithm of the likelihood function can be expressed by 1 F L(Θ; vc) = −  ∑ T f 2  f =1 − T { T {   ln 2π + ln σ 2   { } 1 F f [vc ft − vc( x ft ; β ) − δ ' z ft ] 2 / σ 2 ∑∑ 2 f =1 t =1 } 1 F f − ∑∑ ln Φ[d ft ] − ln Φ[d *ft ] , 2 f =1 t =1 43 } [A.12]